
PROTOTYPES AS STARTING POINT IN MDE: PROOF OF CONCEPT

Alejandro Sánchez-Villarín1 a, Alejandro Santos-Montaño1 b , Nora Koch2 c and

David Lizcano Casas3 d
1 Department of Computer Languages and Systems. University of Seville, Spain

{alejandrosvillarin, alejandrosmontano}@us.es
2 IWT2 Group. University of Seville, Spain

nora.koch@iwt2.org
3 Madrid Open University, Spain

david.lizcano@udima.es

Keywords: Software Prototyping, User-centered Design, Model-driven Engineering.

Abstract: Prototyping is a technique frequently used in the early stages of software development, but often prototypes

are discarded or the provided information manually transferred into further steps of the software production.

An open issue in industry and research is the automated reuse of valuable information included in these

prototypes. We propose to build a tool that transforms prototypes into models. It is based on model-driven

engineering concepts. In this paper, we present a first proof of concept for such a tool. For the validation, we

built a mockup based prototype and a plugin for the transformations. The prototype and the generated analysis

models were presented to potential end-users of software development companies. They confirmed the need

for tool support for reusing information provided by prototypes and considered transforming prototypes into

NDT suite models the most appropriate solution for them.

1 INTRODUCTION

Prototypes are nowadays very often part of the

software development. They are used among others

by requirement engineers to check if the solution

planned will satisfy the expectations of the clients; in

an ideal situation showing these prototypes also to

end-users. There is a lot of literature that supports the

fact that prototypes are an excellent tool to

communicate with users (Escalona et al 2008) that

companies tend to use them in an effective way

(Rivero et al 2014) also for other purposes like

validation and testing of concepts, processes,

technologies, etc.

However, there are also some problems with using

prototypes. They are usually developed together with

a https://orcid.org/0000-0002-7740-5327
b https://orcid.org/0000-0002-0749-6411
c https://orcid.org/0000-0001-6404-0405
d https://orcid.org/0000-0001-7928-5237

clients at the beginning of the life cycle, are validated

and then generally fall into disuse or are discarded

(Sánchez-Villarín et al 2019). For this reason, there is

a tendency not to invest many resources in the so-

called throw-away prototypes. Many times this

decision results to be a failure because later in the

development if the final product does not represent

what the client expects, prototypes have to be rebuilt,

spending more resources and delaying the project

(Budde et al 1992).

In this context, the idea for the SocietySoft project

was born. This project is based on the affirmation that

dedicating resources to prototypes to improve

communication with users is a great investment to

guarantee the quality of the final product, and that it

can be considered a profitable aspect if prototypes can

somehow be reused in the production lifetime cycle

(Hehn, & Uebernickel 2018). The SocietySoft

project works on, using model-guided engineering, to

generate automatically analysis models like

requirements and user interface models, from the

prototypes. In that way gaining time in the first steps

of the software development.

The project started with a systematic study of the

literature (SLR) (Sanchez et al. 2019). The main

conclusion of the SLR is a current lack on suitable

approaches and tools that perform transformations

while maintaining traceability, and subsequently

obtain requirements or other elements of analysis, as

well as focus on the user and the company.

The lack of work regarding tools that allow the

reuse of prototypes documented in the SLR produces

directly a new research question. Is the development

of such a tool interesting? Within the scope of the

SocietySoft project we developed a draft version of a

prototype reuse tool and, currently, we are trying to

prove its value in both the research and the enterprise

environment.

Proof of concept and software validation in real

environments are important and usually difficult to

implement very often due to time to market issues. In

the academic area, validations are made by students

or researchers, where the conditions of an industrial

environment are almost impossible to be simulated

(Salman et al 2015). Thus, the functionality provided

by the resulting software tools developed in the

academic area is very often far away from the

solutions required by the industry (Escalona et al

2007).

In order to evaluate our tool in an enterprise

environment, a set of proof of concepts were

executed. In this paper, we present the results of the

first proof of concepts performed in two companies.

The paper is structured as follow. Section 2

presents an overview of the SocietySoft project.

Section 3 presents the objectives of a proof of

concepts and its implementation. Section 4 presents

the validation performed by two companies. Section

5 presents the lessons learned in the proof of concepts

and Section 6 gives an overview of some related

work. Finally, Section 7 concludes with the next steps

to be carried out within the scope of the project.

2 THE SOCIETYSOFT PROJECT

Information and communication technologies

(ICT) have changed the way in which society at all

levels manages its life. The SocietySoft project

focuses on the ICT sector and more specifically aims

to offer solutions that come from the academic world

to strengthen software consulting companies through

innovation mechanisms that allow them to compete in

the new market niches opened by the Digital Society.

For companies to be competitive in the

development of these types of products, it is

necessary that they provide substantial improvements

for their customers. The development of quality

software reducing costs is a constant search and

projection of software companies.

When it comes to ICT systems or solutions aimed

at society, that is, systems aimed at providing

solutions to groups of people, the situation is largely

measured by the capacity that the software offers

when it comes to interacting and being accessible and

friendly to that society. However, classically, in

software development for society, the focus is on

technology, forgetting that it must be people-oriented

software.

As society evolves towards a Digital Society,

technologies and solutions must evolve with that

society. When facing a software project, there are two

different teams: the technical teams (engineers,

programmers, etc.) and the functional teams (users,

clients, etc.). Until now, most of the solutions

developed by companies were oriented towards

technical teams, to facilitate their work and help them

“become aware” and “blend in” with the needs of the

functional teams. But, due to the fact that these

functional teams are increasingly digital, it is

necessary for companies to begin to think of them as

active and participatory teams that should have a say

in their own developments. This of course is not an

easy task and requires solutions that guide companies

in the sector towards this new change of perspective.

The essential idea of the SocietySoft project is the

development of a technology that arises from the need

that we have detected both at a research and business

level and which consists of the development of a tool

for designing transferable prototypes.

For this, two core technologies are selected:

▪ Mockups for building navigable prototypes as

the starting point. The project team has already

used prototyping as an efficient technique to

facilitate communication with customers and

users (Huber et al. 2020) in previous projects

(Torrecillas et al. 2015).

▪ Model-driven engineering (MDE) for the

development process (Topcu et al 2016)

(Abrahao et al 2017). The NDT-Suite tool was

developed by members of the project team and

successfully applied in several industrial

projects. For the systematization of processes

and tasks in software construction (Escalona et

al 2008), NDT suite allows among others the

automatic transformation of requirements

models into analysis and testing models needed

in further stages of the development life cycle

of a software product.

In short, within the scope of the SocietySoft

project, a tool prototype is developed, that provides

an interface for creating navigable prototypes based

on mockups. These screens will be stored in a

structured way as an instance of a specific

metamodel. This instance will be transformed,

through model-guided engineering, into another

model that will be the basis for the generation of a

system requirements catalogue.

Figure 1 shows a high-level model of the

architecture of the proposed tool solution. The

functional team can develop its mockup using a tool

(in the example used of the proof of concept, this tool

was Microsoft PowerPoint, A in Figure). When the

functional team creates the mockup, in fact, they are

creating a model as an instance (B1) of an abstract

interface metamodel (B). In the SocietySoft a set of

Query-View-Transformations (QVT) was defined.

These transformations allow generating a System

Requirements Metamodel (C) from the abstract

Interface Metamodel. Thus, the tool implements these

transformations in a transformation engine (C1). With

this environment, the model generated by the

functional team (B1) can automatic generate a set of

Systems Requirements Models (D1), that is, an

instance of the System Requirements Metamodel (D).

The result of these transformations is presented as

analysis models (use cases, activity diagrams and

class diagrams) that can be interpreted by NDT-Suite,

the tool of our methodology NDT (E).

Thus, the automatic transformation is supported in

the plugin based on:

• Metamodels that are carried out according to

the principles defined by the IFML standard

(B and D).

• Transformations described in QVT (C) are

implemented in a transformation engine (C1)

that allows their automatic execution.

 Figure 1: Abstract SocietySoft Tool Architecture

In the solution proposed above, the knowledge

about the new software to be built is captured in these

prototypes for being “reused” automatically to

generate the system requirements models. Thus, the

cost of defining and validating requirements is

reduced, but also the generation of errors in the early

stages of the development process can be minimized.

3 PROOF OF CONCEPT

The theoretical solution proposed by the

SocietySoft project is promising and responds to

concrete needs observed in enterprises by the team in

previous projects (Escalona et al. 2007). A practical

solution, i.e. the tool implemented to support the

theoretical approach requires a set of decisions

regarding the user interface, selection of

technologies, plugins for existing tools, etc. Taking

such decisions is not an easy task and implies

significant risks for the acceptance of the final

product by the end users.

Therefore, the validation of software products in

the industrial environment where they will be used in

the production software in the future is an important

aspect of a software project. When the validation is

performed as an initial step it is also known as proof

of concept or feasibility study.

A proof of concept consists of the construction of

a model or demo in order to evaluate the feasibility of

a functional requirement, the development of a

software component, the acquisition of a product, or

a combination of all of them. However, the decision

of performing a proof of concept depends on the

complexity, the risks and the costs of the project and

of the practicability of the proof of concept itself.

3.1 Aim and Preconditions

The proof of concept is frequently used in industry

as a mechanism to value the capacity of a solution

before to develop it. It consists in a short validation

by a set of suitable stakeholders of an idea sketched

in a demo or a very simplified prototype that The

expectation is to obtain critical feedback on the

viability of the project (Dingsøyr et al. 2018).

The following aspects must be considered when

the realisation of a proof of concept is decided:

▪ Risks and complexity of the project should be

high. If the risk is low, the resources and the

time to build the proof are usually not

profitable.

▪ The proof should be evaluated according to

clearly defined objectives. If possible including

what to measure, how to measure it and how

the evaluation should be carried out.

▪ A specific period has to be allocated in order to

have enough time to obtain the required

feedback and results.

▪ The proof must be an integral part of the project

implementation strategy, having been duly

planned and documented, including the time

and effort necessary for its analysis, design, and

implementation.

In our case, the proof of concept was necessary

due to a high risk of user acceptance of the final

software product of SocietySoft, which requires an

investment of a large amount of time and resources.

We defined a proof of concept process adapting the

pragmatic guide provided by Zuci Systems (Vivek,

2020) to the context of our project.

3.2. Implementation

The proof of concepts for the SocietySoft tool

aimed to determinate the feasibility of a

transformation tool for navigable prototypes designed

in PowerPoint into user interface prototypes of the

tool Enterprise Architect, as shown in Figure 1. Last

ones should be appropriated to interact with the tool

NDT-Suite. The NDT plugin supports a complete

model-driven approach, especially requirements

engineering in the development of software products,

mainly web applications.

The proof of concepts follows a series of steps

depicted in the activity diagram shown in Figure 2.

Our first step and the more time consuming was

to build a draft version of the plugin for the

transformations. It was developed and installed into

Enterprise Architect in the NDT-Suite.

Another activity was the design of a very simple

navigable prototype using the tool Microsoft

PowerPoint. This prototype comprised different

elements. The goal is to check whether the tool can

transform a variety of elements like buttons and text

boxes.

In addition to the navigable prototype and the

plugin, we selected a first set of appropriate

companies for the proof of concepts. This paper

presents only the preliminary execution of the proof

of concept. The reader is referred to the next section

for a brief description of the two companies and the

feedback obtained.

Figure 2: Process for the proof of concept

The simple navigable prototype consists of a

couple of slides; two of them are described in detail

in the following. The first one represents a form of

terms and conditions, consisting of a text box with the

terms and conditions, and two buttons, one to accept

it and another to reject it (see Figure 3). The second

one is a basic creation form including input boxes to

write a date, an email, and a text as well as a button

to send these data (see Figure 4).

The next step of the proof is to perform the

transformation to obtain the navigable prototype in

NDT. This transformation has been made using an

automatic conversion between XMIs. PowerPoint has

an XMI which includes information on the number of

slides, the number of elements in each slide, their

shapes, colours, position, etc.

The XMI is imported into Enterprise Architect

and will be converted to specific XMI format needed

for the navigable prototypes in NDT.

The code of the transformation has been written

using the language Kotlin, which includes libraries to

easily interact with PowerPoint, like Apache Poi.

Finally, the navigable prototype in Enterprise

Architect is generated from the imported XMI by the

plugin installed in the Enterprise Architect.

Figure 3: Prototype term and conditions in PowerPoint

Figure 4: Prototype basic form in PowerPoint

Figure 5 and Figure 6 show the two pages of the

NDT-Suite prototype that were generated

automatically based on the navigable prototypes

designed in Microsoft PowerPoint. The

transformation produced an almost identical

prototype in which the different interface elements

like buttons, input fields and text boxes were

generated as depicted in Figure 5 and Figure 6. The

internal representation corresponds to the XMI of the

NDT metamodel.

Figure 5: Prototype term and conditions in EA

Figure 6: Prototype basic form in EA

4 EXECUTION OF THE PROOF

OF CONCEPTS

The last step of the proof of concept is the validation

by the selected companies, in our case, Everis and

G7Innovation. Their feedback will be useful for

planning the next versions of our tool solution.

4.1 Everis

Everis is an NTT DATA Company, dedicated to

consulting and outsourcing in all sectors. Everis has

24500 professionals across Europe, USA, and Latin

America.

For the proof of concept, we arranged with the

Everis team a meeting using the platform Microsoft

Teams. In that meeting, we made a presentation in

which the most important aspects of the proof of

concepts were presented, as well as the tool

developed for the proof of concept.

The main conclusions of their validation are:

▪ Interest of Everis in the developed tool as it is

closely related to the development process used

in the company.

▪ Check whether PowerPoint could be replaced

by another alternative prototyping tool that

offers identification of model structures.

▪ Align the export to the XMI versions 1.1 and

2.1, both used in Everis. This will avoid future

problems of compatibility.

▪ A communication channel will be maintaining

between Everis and the SocietySoft team to

update them with new versions of the tool.

▪ Possibility of physically attending the Everis

Zaragoza offices to make a presentation of the

product.

4.2 G7Innovation

G7Innovation is a technology-based company,

based in Seville (Spain) with a focus in the

development of ICT solutions applied to clinical and

health management and characterised by a high level

of innovation. The multidisciplinary group of

computer engineers, healthcare personnel and experts

in business management of G7Innovation, has

extensive experience in the health sector.

For the validation of our approach, the same

presentation prepared for Everis was used in the

Skype meeting with G7Innovation showing the most

relevant and essential aspects for the proof of

concepts.

In the meeting all the points of the presentation

and the conclusions obtained with Everis were raised.

As a result, G7Innovation agreed in almost all points

with Everis, stressing the need to search for other

software instead of PowerPoint for prototyping. They

explained how they currently perform prototyping,

mentioning that the tool for navigable prototypes we

propose in the proof of concept would be highly

beneficial for its company.

5 LESSONS LEARNED

Thanks to the completion of these proof of concepts,

the junior members of the project team could better

understand the concept of proof of concept. They

could appreciate its relevance for a project that aims

to develop a tool or extend the functionality of a tool

in order to analyse its feasibility and impact.

In addition, the possibility of validating the tool

prototype with real companies allowed us to better

understand the acceptance of such a tool and the

improvements required by real potential users.

Specifically, we received a suggestion for the use

of an online tool for designing mockups, which is

more appropriate for the companies. We will analyse

these prototyping alternatives in detail and report

accordingly in future works.

6 RELATED WORK

Many works report on the need for a proof of

concept before a software development project is

started. Some of them report on how they performed

such a proof of concept and on who was involved in

such proof. Our focus was on efforts using

storyboards (Rasheed et al, 2019), dashboards (Croon

et al, 2015) or mockups (Rivero et Conte, 2013;

Rivero et al. 2014 & 2019) due to similarities to our

project.

For example, Croon et al (2015) proved the idea

of a dashboard based tool to identify patients in need

of follow-up. They used a rapid prototyping

methodology. The prototype was evaluated by 12

students and 15 general practitioners.

 The technique WebDUE (Web Design Usability

Evaluation) and the Mockup DUE tool proposed by

Rivero & Conte (2013) to evaluate the usability of

web applications was instead only evaluated by a

group of students in the academic field. However,

their work is interesting from the point of view of the

use of mockups for inspection and annotation in the

web design.

Mockups is as well the technique selected as a

starting point by Rivero et al. (2011, 2014) for the

software development process. The Mockup Model-

driven (MockupDD) approach generates user

interface models based on model transformations and

metamodels. Their aim – similar to ours – is to avoid

the loss of information included in the mockups.

Rasheed et al. (2019) propose an interesting approach

for merging the concepts of storyboarding and

metamodel. Their aim is to automate the creation of

evolutionary prototypes. An online booking

application is used as a case study to validate their

approach showing that their metamodel is capable of

generating both simple as well as complex

storyboards. A proof of concept in an industrial

environment is neither reported nor planned neither in

Rasheed et al (2019) nor Rivero et al (2011, 2014).

7 CONCLUSIONS AND FUTURE

WORKS

This paper presents a preliminary work in the

context of the SocietySoft project. SocietySoft

proposes that if a suitable tool for reusing navigable

prototypes developed in the early stages of a software

development project could help companies to make a

bigger investment in their development and

validation.

In order to evaluate the suitability of a tool based

on the model-driven paradigm and its acceptance in

the industrial environment, a proof of concept was

executed in two companies. This paper describes how

the proofs of concept were planned, carried out and

the results obtained. These results indicate that there

is indeed a need for tool support for reusing

information provided by mockups and that

transforming them into models of NDT suite is the

right kind of tool.

We concluded that the proof of concept was a

success, regarding the interest and acceptance in real

environments of the tool for transforming prototypes

into models. Our investment of time and resources in

building this very simple prototype and the draft

version of the plugin were affordable. In addition, the

companies guaranteed future support, meetings for

the control of the tool, and the test in the internal

development area of the companies once a stable

version is available.

However, this proof of concept is preliminary. An

important future work is to try to improve it.

Obviously, feedback of two companies may not be

enough. We plan further proof of concepts in other

companies to evaluate the suitability of our tool.

A next step then will be the construction of the

complete SocietySoft tool comprising the prototype

design and the plugin for importing the prototype and

transforming it into models. In this sense, the next

concrete steps would be the development and testing

of the transformations to obtain the elements of

analysis, such as system requirements. Therefore,

first, we will check and eventually change the

prototyping tool from PowerPoint to an online tool

with community support such as draw.io. This tool

has to fulfil our requirements of exporting in XML

format in a way that allows us to obtain appropriate

transformations for our NDT plugin. In addition, we

have to refactor the code of the plugin developed to

C# in order to obtain greater efficiency.

 For our beta version of the tool, we plan an

experimentation and validation following the best

practices of Juristo & Moreno (2001). They propose

the following phases for the lifecycle of the

validation: goal definition, design of the experiment,

execution of the experiment, and analysis of the

results.

With all this, we will be able to get a complete

tool, which allows maintaining traceability between

the prototype and the model elements, with the cost

reduction and time savings that this implies.

ACKNOWLEDGEMENTS

This paper was supported by the project
“SocietySoft-Transfer of tools, policies, and
principles for creating quality software for the digital
society” (AT17 5904 USE) of the Andalusian
Regional Government`s Department of Economy,
Knowledge, Business, and Universities (Spain) and
NICO project (PID2019-105455GB-C31) of the
Ministry of Science, Innovation and University of the
Spanish Government.

Furthermore, the authors would also like to thank
the anonymous reviewers for their valuable

comments and suggestions to improve the quality of
the paper.

REFERENCES

Abrahão, S., Bordeleau, F., Cheng, B., Kokaly, S., Paige,

R. F., Störrle, H., Whittle, J. (2017). User Experience for

Model-Driven Engineering: Challenges and Future

Directions. In 2017 ACM/IEEE 20th International

Conference on Model Driven Engineering Languages

and Systems (MODELS), 229-236. IEEE.

Alfonso Hoyos, J.P., Restrepo-Calle, F. (2018) Fast

prototyping of web-based information systems using a

restricted natural language specification.

Communications in Computer and Information Science,

866, 183-207.

Anjum R., Azam, F., Anwar, M.W., Amjad, A. (2019). A

meta-model to automatically generate evolutionary

prototypes from software requirements. ACM

International Conference Proceeding Series, 131-136.

Budde, R., Kautz, K., Kuhlenkamp, K., & Züllighoven, H.

(1992). What is prototyping?. Information Technology

& People.

De Croon, R., Klerkx, J., and Duval, E. (2015). Design and

Evaluation of an Interactive Proof-of-Concept

Dashboard for General Practitioners, 2015 International

Conference on Healthcare Informatics, Dallas, TX,

150-159, doi: 10.1109/ICHI.2015.25.

Dingsøyr, T., Moe, N. B., Fægri, T. E., Seim, E. A. (2018).

Exploring software development at the very large-

scale: a revelatory case study and research agenda for

agile method adaptation. Empirical Software

Engineering, 23(1), 490-520.

Escalona, M. J., Gutierrez, J. J., Villadiego, D., León, A., &

Torres, J. (2007). Practical experiences in web

engineering. In Advances in Information Systems

Development, 421-433. Springer, Boston, MA.

Escalona, M. J., Gutierrez, J. J., Villadiego, D., León, A.,

Torres, J. (2007) Practical Experiences in Web

Engineering, 421–433. Springer US.

Escalona, M.J., Aragón, G. (2008). NDT: A Model-Driven

Approach for Web Requirements. IEEE Trans. on

Software Engineering 34 (3) 377-390

Escalona, M.J., Gutierrez, J.J., Mejías, M., Aragón, G.,

Ramos, I., Torres, J., Domínguez, F.J. (2011). An

overview on test generation from functional

requirements. Journal of Systems and Software, 84 (8),

1379-1393.

Garcia-Garcia, J.A., Alba Ortega, M., García-Borgoñón, L.,

Escalona, M.J. (2012). NDT-Suite: A model-based

suite for the application of NDT. 7387. 469-472.

10.1007/978-3-642-31753-8_46.

Hehn, J., Uebernickel, F. (2018, August). The use of design

thinking for requirements engineering an ongoing case

study in the field of innovative software-intensive

systems. In 2018 IEEE 26th International

Requirements Engineering Conference (RE) (pp. 400-

405). IEEE.

Huber, T. L., Winkler, M. A., Dibbern, J., Brown, C. V.

(2020). The use of prototypes to bridge knowledge

boundaries in agile software development. Information

systems journal, 30(2), 270-294.

IFML. Interaction Flow Modeling Language.

http://www.ifml.org (last visit 10.09.2020).

Iyenghar, P., Wessels, S., Noyer, A., Pulvermueller, E.,

Westerkamp, C. (2016). A novel approach towards

model-driven reliability analysis of Simulink models.

IEEE International Conference on Emerging

Technologies and Factory Automation, ETFA.

Juristo, N., Moreno, A.M. Basics of software engineering

experimentation. Kluwer, 2001.

Kamalrudin, M., Grundy, J. (2011) Generating essential user

interface prototypes to validate requirements. 26th

IEEE/ACM International Conference on Automated

Software Engineering, ASE 2011, Proceedings.

6100126, 564-567.

McMillan, C., Hariri, N., Poshyvanyk, D., Cleland-Huang,

J., and Mobasher, B. (2012). Recommending source

code for use in rapid software prototypes. In

Proceedings of the 34th International Conference on

Software Engineering, pages 848–858. IEEE Press.

QVT. MOF QUERY/VIEW/TRANSFORMATION

SPECIFICATION VERSION 1.3.

http://www.omg.org/spec/QVT/About-QVT/ (last visit

10.09.2020)

Rasheed, Y., Azam, F., Anwar, M.W., Tufail, H. (2019). A

model-driven approach for creating storyboards of web

based user interfaces. In: Proceedings of the 2019 7th

International Conference on Computer and

Communications Management, 169–173.

Rivero, J. M., Grigera, J., Rossi, G., Luna, E. R., Montero,

F., Gaedke, M. (2014). Mockup-driven development:

providing agile support for model-driven web

engineering. Information and Software

Technology, 56(6), 670-687.

Rivero J.M., Grigera J., Rossi G., Robles Luna E., Koch N.

(2012). Towards Agile Model-Driven Web

Engineering. In Nurcan S. (Eds) IS Olympics:

Information Systems in a Diverse World. CAiSE 2011.

LNCS, 107. Springer, Berlin, Heidelberg.

Rivero, L., Conte, T. (2013). Using an empirical study to

evaluate the feasibility of a new usability inspection

technique for paper based prototypes of web

applications. Journal Software Engineering Research

and Development 1, 2.

Salman, I., Tosun, A., Juristo, N. (2015). Are students

representatives of professionals in software engineering

experiments? In 37th IEEE/ACM International

Conference on Software Engineering, ICSE 2015,

Florence, Italy, Volume 1, 666–676.

Sánchez-Villarín, A., Santos-Montaño, A., Enríquez, J.G.

(2019). Automatic Reuse of Prototypes in Software

Engineering: A Survey of Available Tools. 15th Int.

Conference on Web Information Systems and

Technologies (WEBIST 2019), 144-150. 10.5220/

0008352901440150.

 Topçu, O., Durak, U., Oğuztüzün, H., & Yilmaz, L. (2016).

Model Driven Engineering. In Distributed Simulation,

23-38. Springer International Publishing.

Torrecilla-Salinas, C. J., Sedeño, J., Escalona, M. J.,

Mejías, M. (2015). Estimating, planning and managing

Agile Web development projects under a value-based

perspective. Information and Software Technology, 61,

124-144.

Vivek, J. (2020). The Ultimate Guide to Proof of Concept

for Software Development, Zuci System. Medium.

https://medium.com/@zucisystems/the-ultimate-guide-

to-proof-of-concept-for-software-development-2020-

859aec3a82d3 (last visit 5.10.2020).

http://www.ifml.org/

