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7.1 Introduction

The last decades have shown tremendous advances in the field of information technology

(IT). In fact, with online access to vast amounts of information, states o¤ering their ser-

vices for citizens on the World Wide Web, and software in control of critical areas such

as flight control systems, information systems now lie at the very foundations of our soci-

ety. But it is the business sector where IT has had the most impact. Driven by the need to

stay competitive in an environment of rapid change in global markets and business mod-

els, as well as local regulations and requirements, organizations now strongly depend on a

functional and e‰cient IT infrastructure which is flexible enough to deal with unexpected

changes while still o¤ering stability for business processes and connections to customers,

partners, and suppliers.

With the emerging trend of automating complex and distributed business processes as a

whole, many organizations face the problem of integrating their existing, already vastly

complicated, systems to reach yet another layer of sophistication in the interconnection of

business value, business processes, and information technology. Many IT systems are di‰-

cult to adapt and work with; progress in the world of businesses is often impeded by the

di‰culty of changing the existing IT infrastructure. Service-oriented computing (SOC) is

a new approach to software development and integration that addresses these challenges.

SOC provides the opportunity for organizations to manage their heterogeneous infrastruc-

tures in a coherent way, thus gaining new levels of interoperability and collaboration with-

in and across the boundaries of an organization. In addition, SOC promises new flexibility

in linking people, processes, information, and computing platforms.

The IST-FET Integrated Project Sensoria1 is a European Community-funded project

that develops methodologies and tools for dealing with service-oriented computing. It

addresses major problems found in current approaches to SOC and provides mathemati-

cally founded and sound methodologies and tools for dealing with the amount of flexibility

and interoperability needed in these next-generation infrastructures. Sensoria aims to sup-

port a more systematic and scientifically well-founded approach to engineering of software



systems for service-oriented overlay computers. At the core of our research is a concept of

service that generalizes current approaches such as Web Services and Grid Computing.

Sensoria provides the scientific foundations for a development process where developers

can concentrate on modeling the high-level behavior of the system and use transformations

for deployment and analysis. To this end we investigate programming primitives supported

by a mathematical semantics; analysis and verification techniques for qualitative and

quantitative properties such as security, performance, quality of service, and behavioral

correctness; and model-based transformation and development techniques.

In the NESSI road map most of the research of Sensoria is located in the service integra-

tion layer, although the research touches both the semantic layer and the infrastructure

layer, as well as the crosscutting areas of management services, interoperability, and

security. Sensoria addresses grand challenges from the areas of service foundations

(dynamic reconfigurable architectures, end-to-end security), service composition (compos-

ability analysis operators for replaceability, compatibility, and conformance; QoS-aware

service composition; business-driven automated composition); service management (self-

configuring services); and service engineering (design principles for engineering service

applications, associating a service design methodology with standard software develop-

ment, and business process modeling techniques). In the addressed grand challenges, the

Sensoria research consortium focuses on solid mathematical foundations—the project as a

whole therefore is located in the ‘‘foundational plane’’ of the SOCRoadMap (see chapter 1).

In the remaining sections, we present the Sensoria development approach and illustrate

its building blocks. Section 7.2 contains an overview of the Sensoria project and introduces

the case study that will be used throughout the chapter.

Today, both UML and SCA are commonly used to specify service-oriented systems,

either individually or in combination. Therefore we show two alternative approaches to

modeling: the Sensoria UML extension for services and the SCA-inspired SRML, in sec-

tions 7.3 and 7.4, respectively.

When orchestrating service-oriented systems it is often necessary to find trade-o¤s be-

tween conflicting system properties. In section 7. 5 we show how soft constraints can be

used to model context-dependent restrictions and preferences in order to perform dynamic

service selection.

In section 7.6, to illustrate our approach to qualitative and quantitative analysis, we

show two of the calculi which are used in the Sensoria development environment, but

normally hidden from the developers. The COWS calculus can be used for performing se-

curity modeling and enforcement on service orchestrations; in particular, we add annota-

tions for ensuring confidentiality properties. The PEPA process algebra is used to validate

the performance of orchestrations regarding previously defined service-level agreements in

section 7.7.

An expanded version of this paper is available as LMU-IFI-PST technical report 0702

(Wirsing et al. 2007a).
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7.2 Sensoria

Sensoria is one of the three integrated projects of the Global Computing Initiative of FET-

IST, the Future and Emerging Technologies section of the European Commission. The

Sensoria Consortium consists of 13 universities, two research institutes, and four compa-

nies (two SMEs) from seven countries.2

7.2.1 Sensoria Approach

The core aim of the Sensoria project is the production of new knowledge for systematic

and scientifically well-founded methods of service-oriented software development. Sensoria

provides a comprehensive approach to the visual design, formal analysis, and automated

deployment of service-oriented applications. The Sensoria techniques enable service engi-

neers to model their applications on a very high level of abstraction, using service-oriented

extensions of the standard UML or standard business process models, and to transform

those models to be able to use formal analysis techniques as well as generate executable

code.

The Sensoria techniques and tools are built on mathematical theories and methods.

These formal results are complemented by realistic case studies for important application

areas including telecommunications, automotive, e-learning, and e-business. The case

studies are defined by the industrial partners to provide continuous practical challenges

for the new techniques of services engineering and for demonstrating the research results.

This approach is shown in figure 7.1.

An important consideration of the Sensoria project is ‘‘scalable analysis for scalable sys-

tems.’’ Our vision is that developers of service-oriented systems can develop at a high level

of abstraction with support from tools that analyze the system models, provide feedback

about the reliability of the system and possible problems, establish the validity of func-

tional and nonfunctional requirements, and manage the deployment to di¤erent platforms.

We base our tools on formal languages with well-defined properties which make it possible

to establish their correctness. Two aspects are particularly important to make the process

practical for commercial software development: (1) analysis results are translated back into

the familiar modeling notations so that developers do not need to understand the calculi

used to perform the analysis, and (2) the analyses not only are usable for ‘‘toy examples,’’

but also scale to realistic problems. The process may be customized to various application

domains and di¤erent iterative and agile process models, such as the Rational Unified Pro-

cess (RUP), Model-Driven Development (MDD), or Extreme Programming (XP). Figure

7.2 displays one step in this development process.

The developer usually works with higher-level input models, but also with program

code, and uses the Sensoria development environment (downloadable from Sensoria proj-

ect 2007) to perform qualitative or quantitative analysis and to generate output (e.g.,

new models or code that can be deployed on various platforms). Our tools within the
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qualitative and quantitative analyses can, for example, perform checks of functional cor-

rectness of services, early performance analysis, prediction of quantitative bottlenecks in

collaborating services, and verification of service-level agreements.

7.2.2 Research Themes

The research themes of Sensoria range across the whole life cycle of software development,

from requirements to deployment, including reengineering of legacy systems.

Modeling Service-Oriented Software The definition of adequate linguistic primitives for

modeling and programming service-oriented systems enables model-driven development

for implementing services on di¤erent global computers, and for transforming legacy sys-

tems into services using systematic reengineering techniques. Modeling front ends allows

Figure 7.1
Sensoria innovation cycle
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designers to use high-level visual formalisms such as the industry standard UML. Auto-

mated model transformations allow generation of formal representations from engineering

models for further development steps.

Formal Analysis of Service-Oriented Software Based on Mathematically Founded Techniques

Mathematical models, hidden from the developer, enable qualitative and quantitative

analysis supporting the service development process and providing the means for reasoning

about functional and nonfunctional properties of services and service aggregates. Sensoria

results include powerful mathematical analysis techniques, particularly in program analy-

sis techniques, type systems, logics, and process calculi for investigating the behavior and

the quality of service of properties of global services.

Deploying and Runtime Issues of Service-Oriented Software The development of sound engi-

neering techniques for global services includes deployment mechanisms with aspects such

as runtime self-management, service-oriented middlewares, and model-driven deployment,

as well as reengineering legacy systems into services, thus enabling developers to travel the

last mile to the implementation of service-oriented architectures.

7.2.3 Automotive Case Study

Today, computers embedded in cars can access communication networks such as the Inter-

net, and thereby provide a variety of new functionalities for cars and drivers. In the future,

Figure 7.2
Sensoria development process
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instead of having to code these functionalities, services will be able to be discovered at run-

time and orchestrated so as to deliver the best available functionality at agreed levels of

quality. A set of possible scenarios of the automotive domain are examined to illustrate

the scope of the Sensoria project. In the following we focus on one of them, the car repair

scenario.

In this scenario, the diagnostic system reports a severe failure in the car engine that

implies the car is no longer drivable. The in-vehicle repair support system is able to orches-

trate a number of services (garage, backup car rental, towing truck) that are discovered

and bound at that time according to levels of service specified at design time (e.g., balanc-

ing cost and delay). The owner of the car deposits a security payment before the discovery

of the services is triggered.

7.3 UML Extension for Service-Oriented Architectures

Within the Sensoria approach, a service engineer can model services using a specialization

of the UML covering static, dynamic, and quality-of-service aspects of services.

For the static aspects of service-oriented software systems, the UML specialization

ranges from rather simple, stereotyped language extensions for introducing services to

more complicated structures such as dependency relations between services and their

contextual relationships to resources and legacy systems. Modeling dynamics of service-

oriented software, in particular orchestration and choreography of services, is supported

by primitives for interaction and activity modeling that take into account possible failures

and quality-of-service aspects. (These nonfunctional extensions are not covered in this

chapter. Interested readers are referred to Wirsing et al. 2006.)

7.3.1 Modeling Structures of SOA

The structure of a service-oriented architecture can be visualized by UML deployment and

composite structure diagrams. A deployment diagram is used to represent the—usually

nested—nodes of the architecture (i.e., hardware devices and software execution environ-

ments). Figure 7.3 shows a UML deployment diagram of the car and its environment as

first approximation to an architecture model. The nodes are connected through communi-

cation paths that show the three types of communication that characterize the automotive

domain: intravehicle communication (nonnamed connections), intervehicle communica-

tion, and communication among vehicle and environment, such as the communication

with the car manufacturer or a remote discovery server. The components that are involved

in the execution of service orderings are a service discovery which may be local or external

to the car, a reasoner for service selection, and a service orchestrator.

In addition to UML deployment diagrams, which give a static view of the architecture,

we use UML structure diagrams to represent the evolving connections within the service-

oriented architecture of the vehicle and its environment. Three types of connections are
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identified: discovery connection, permanent connection (as in modeling of non-service-

oriented architectures), and temporary connections. In order to be invoked, services need

to be discovered before the binding to the car’s onboard system takes place. Thus the dis-

covery connection is based on the information provided by a discovery service. We distin-

guish a temporary connection which is, for example, one from the car’s onboard system

to a known service, such as the car manufacturer’s discovery service, from a permanent

connection. Permanent connections wire components as in traditional software. For a

graphical representation and more details about these connections, the reader is referred

to Wirsing et al. (2006).

7.3.2 Modeling Behavior of SOA

The behavior of a service-oriented system is mainly described by the service orchestration

which defines the system’s workflow. Modeling orchestration of services includes specify-

ing interactions among services, modeling transactional business processes using concepts

developed for long-running transactions, and specifying nonfunctional properties of

services.

In the modeled business process of the on-road car repair scenario, the orchestration

is triggered by an engine failure or a sensor signal such as low oil level. The process

starts with a request from the orchestrator to the bank to charge the driver’s credit card

with the security deposit payment, which is modeled by an asynchronous UML action

requestCardCharge for charging the credit card. The number of the card is provided as

output parameter of the UML stereotyped call action. In parallel to the interaction with

the bank, the orchestrator requests the current position of the car from the car’s internal

GPS service. The current location is modeled as input to the requestLocation action

and subsequently used by the findLocalServices and findRemoteServices interac-

tions, which retrieve a list of services. For the selection of services the orchestrator syn-

chronizes with the reasoner to obtain the most appropriate services. Service ordering is

modeled by the UML actions orderGarage, orderTowTruck, and orderRentalCar, fol-

lowing a sequential and parallel process, respectively.

Figure 7.4 shows a UML activity diagram of the orchestration of services in the on-road

car repair scenario. We use stereotyped UML actions indicating the type of interactions

(send, receive, sendAndReceive), and model input and output parameters of the inter-

actions with UML pins stereotyped with outgoing and incoming arrows (abbreviations for

send and receive, respectively). These pins are not linked to any edge, but specify variables

containing data to be sent or target variables to accept the data received; constraints pro-

hibit illegal combinations such as send actions with input pins. Interactions match opera-

tions of required and provided interfaces of the services. Services are defined as ports of

UML components.

The key technique to handle long-running transactions is to install compensations (e.g.,

based on the Saga concepts; Bruni et al. 2005). Modeling of compensations is not directly
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supported in UML. We provide a UML extension within Sensoria for the modeling

of these compensations. The extension consists of two modeling primitives—Scope and

CompensationEdge—and corresponding stereotypes for UML activity diagrams. A

Scope is a structured activity node that groups activity nodes and activity edges. The

grouping mechanism provided is convenient for the definition of a compensation or fault

handler for a set of activities; at the same time, fault and compensation handlers can also

be attached directly to actions. Compensation handlers are defined by linking an activity

or scope with a compensationEdge stereotyped activity edge to the compensation han-

dler. The handler in turn may again consist of a single action (e.g., see cancelGarage in

figure 7.4). On completion of an activity node with an associated compensation handler,

the handler is installed and is then executed upon the occurrence of an unhandled excep-

tion in the continued execution of the orchestration.

The UML stereotypes defined for orchestration are part of the Sensoria UML Profile.

The use of such a UML extension has direct advantages for the design of model transfor-

mations, especially for deployment transformations.

7.4 The Sensoria Reference Modeling Language

SRML is a language for modeling composite services understood as services whose busi-

ness logic involves a number of interactions among more elementary service components

as well the invocation of services provided by external parties. SRML o¤ers modeling

primitives inspired by the Service Component Architecture (SCA) (Beisiegel et al. 2005)

but addressing a higher level of abstraction in which one models the business logic of the

domain. SRML models both the structure of composite services and their behavioral

aspects. As in SCA, interactions are supported on the basis of service interfaces defined in

a way that is ‘‘independent of the hardware platform, the operating system, the hosting

middleware and the programming language used to implement the service’’ (Fiadero et al.

2006).

An SRML module declares one or more components, a number of ‘‘requires-interfaces’’

which specify services that need to be provided by external parties, and (at most) one

‘‘provides-interface’’ that describes the properties of the service o¤ered by the module.

Components have a tight coupling (performed at design time) and o¤er a distributed or-

chestration of the parties involved in the service. The coupling between components and

external parties is looser and is established at runtime through the discovery, selection,

and binding mechanisms that are supported by the underlying service middleware.

A number of wires establish interaction protocols among the components and between

the components and the external parties that instantiate the interfaces. A wire establishes a

binding between the interactions that both parties declare to support and defines the inter-

action protocol that coordinates those interactions. Figure 7.5 illustrates the SRML mod-

ule for the on-road car repair scenario.
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We are developing an editor for SRML based on Eclipse Modeling Framework (EMF).

The editor relies on an SRML metamodel consisting of an EMF tree; graph transfor-

mation techniques can be used to automate the encoding between (parts of ) SRML and

other languages for which an EMF metamodel exists. Thus, for example, we are providing

an encoding from BPEL processes into SRML modules (Bocci et al. 2007). More speci-

fically, we extract high-level declarative descriptions of BPEL processes that can be used

for building more complex modules, possibly including components defined in other

(implementation or modeling) languages for which an encoding into SRML exists. We

are using the same approach to develop mappings between SRML and other modeling

Figure 7.5
(a) Entities in a SRML module, (b) SRML module for the on road car repair scenario
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languages/calculi developed in Sensoria. For instance, we are encoding SRML into

COWS in order to provide SRML with an operational semantics for the process of service

discovery.

7.4.1 Specifying SRML Entities

The specification of each SRML entity (components, external interfaces, and wires)

addresses properties of the interactions supported by that entity.

Figure 7.6 presents the interactions specified in the business role fulfilled by the

orchestrator. SRML supports conversational interaction types—send-and-receive (s&r)

and receive-and-send (r&s)—involving initiation (interaction% denotes the event of ini-

tiating interaction), reply (interaction* denotes the reply event of interaction), and

other events for handling specific aspects of conversations, such as committing, canceling,

and revoking a deal (see Fiadero et al. 2006 for an exhaustive list of types of interactions

and interaction events). Interactions can have (%-parameters for transmitting data when

the interaction is initiated and (*-parameters for carrying a reply).

The di¤erent types of entities involved in a module are specified in SRML using three

di¤erent but related languages. All the languages provide a specification of the supported

Figure 7.6
Specification of the interactions for the business role Orchestrator
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interactions. The languages for defining business roles, business protocols, and interaction

protocols di¤er in the way they define the behavioral interface.

A component is a computational unit represented in a module by what we call a busi-

ness role. A business role declares the interactions in which the component can become

involved, as well as the execution pattern that orchestrates those interactions (i.e., the

orchestration). The orchestration is specified through a set of variables that provide an

abstract view of the state of the component and by a set of transition rules.

The transition rules can be derived from UML sequence or activity diagrams and refined

with additional information. Each transition has a trigger, typically the occurrence of an

interaction event, a guard identifying the states in which it can take place, the e¤ects that

change the local state (s 0 denotes the value of the local variable s after the transition), and

the sends which specify the interaction events that are sent. The following is a transition of

the business role Orchestrator.

transition startProcess

triggeredBy engine Failure%?

guardedBy s=Begin

effects s’=FailureDetected

sends currentLocation%!

^ askUsrDetails%!

The external interfaces are defined in a module through what we call business protocols.

Business protocols specify the interactions similarly to business roles. Their behavior

abstracts from details of the local state of the co-party and specifies the protocol that the

co-party adheres to as a set of properties concerning the causality of the interactions. The

following is the behavior for the business protocol Engine Failure.

initiallyEnabled engineFailure%?

engineFailure%? enables confirmation%!

The behavior is described by two statements. The first one ensures that the interaction

engineFailure%? is enabled from the beginning of the session and that it remains enabled

until it occurs. In the second one, confirmation%! will be accepted only after the occur-

rence of engineFailure%?.

7.4.2 Service-Level Agreement

SRML o¤ers primitives for modeling ‘‘dynamic’’ aspects concerned with configuration,

session management, and service-level agreement (SLA). In particular, SRML supports

the definition of attributes and constraints for SLA, using the algebraic techniques devel-

oped in Bistarelli et al. (1997) and Bistarelli (2004) for constraint satisfaction and optimi-

zation. Section 7.5 presents this calculus in more detail, together with an example, and

shows how the constraints can be modeled in SRML.

172 Wirsing and colleagues



7.5 Soft Constraints for Selecting the Best Service

The reasoning component of a service-oriented system (see figure 7.3) has to achieve a

compromise between di¤erent goals of the system. Soft constraints are a promising way

to specify and implement such reasoning mechanisms.

Soft constraints are an extension of classical constraints to deal with nonfunctional

requirements, overconstrained problems, and preferences. Instead of determining just a

subset of admissible domain elements, a soft constraint assigns a grade to each element of

the application domain. Bistarelli, Montanari, and Rossi (Bistarelli et al. 1997) and Bistar-

elli (2004) have developed a very elegant theory of soft constraints where many di¤erent

kinds of soft constraints can be represented and combined in a uniform way over so-called

constraint semirings (c-semirings).

In Sensoria we are developing a language which extends the c-semiring approach with

possibilities to specify preferences between constraints and to vary the constraints accord-

ing to a context. This simplifies the description of behaviors of systems in a dynamically

changing environment and with complex trade-o¤s between conflicting properties.

A context is a boolean expression which can guard a constraint. For example, the dis-

tance to the destination might determine whether the quick availability of a rental car is

important or not. In this case, ‘‘distance < 20km’’ is a context that can restrict the applica-

bility of a constraint. Variables appearing in contexts are called context variables; variables

appearing only in constraints but not in contexts are called controlled variables. In the car

repair scenario, the context variables will specify, among other things, the distance to the

destination or whether the journey is work-related. The controlled variables represent

properties of o¤ers (e.g., the cost or quality of an o¤er). A soft constraint is a mapping

from (domains of ) controlled variables into a c-semiring.

In the car repair scenario we use soft constraints to specify the preferences of the users.

The constraints map the controlled variables into a c-semiring where values are natural

numbers; 0 means not acceptable, 1 means barely acceptable, and higher numbers repre-

sent higher values of acceptance. For example, the user may prefer a garage that can repair

the car as quickly as possible, with a duration of more than two days not being acceptable:

fastRepair: ½garage-duration j n ! 148 b48 ! nc�

We also may want the repair to be done cheaply, but only if the trip is not work-related.

Repairs costing more than 1000 euros are still acceptable, but only barely:

cheapRepair: in context swork-related?

assert ½garage-cost j n ! b1000 ! ni 1� end

Users might not consider all constraints to be equally important. For example, a user

who prefers fast but expensive repairs can specify this as a preference between constraints:

fastRepair > cheapRepair. In this case an o¤er that results in a faster repair will always be

preferred; the price will be used only to break ties between equally fast repairs.
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From a set of constraints and preferences the reasoner can compute either the best solu-

tions or a set of all solutions that are better than a certain threshold. Two techniques that

are used for solving soft constraint systems are branch search and bound search (Wirsing

et al. 2007c) and dynamic programming (Bistarelli 2004).

The constraints presented in this section can be modeled in SRML using the following

syntax, where S is a c-semiring, D is a finite set (domain of possible elements taken by the

variables), and V is a totally ordered set (of variables).

7.5.1 Constraint System

S is <[0..1000],max,min,0,1000>

D is {nnAN:1ana1000}

V is {DR.askUsrDetails*.workRelated, GA.cost, GR.duration,...}

The variable DR.askUsrDetails*.workRelated is a Boolean context variable that is true if

the trip is work-related. The variables GA.cost and GR.duration represent the cost and

availability of the garage service, respectively. We show the SRML specification of the

fastRepair and cheapRepair constraints. Notice that we represent the context as a variable

of the constraint.

7.5.2 Constraints

fastRepair is <{GA.duration},def1>

s.t. def1(n)=48/n;

cheapRepair is <{GA.cost},def2> s.t. def2(n)=

if DR.askUsrDetails*.workRelated

then 1 else 1000/n;

7.6 A Process Calculus for Service-Oriented Systems

COWS (Calculus for Orchestration of Web Services [Lapadula et al. 2007b]) is a recently

designed process calculus for specifying, combining, and analyzing service-oriented appli-

cations while modeling their dynamic behavior. We present (an excerpt of ) COWS’s main

features and syntax while modeling some simplified components of the on-road car repair

scenario. The type system of COWS (Lapadula et al. 2007a) enables us to verify confiden-

tiality properties (e.g., that critical data such as credit card information is shared only with

authorized partners). The complete specification, including compensation activities, can be

found in Wirsing et al. (2007b).

7.6.1 Service Orchestration with COWS

To start with, we present the COWS term representing the ‘‘orchestration’’ of all services

within the scenario of section 7.3:
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[pcar] (Orchestrator j LocalDiscovery j Reasoner j SensorsMonitor) j Bank j
OnRoadRepairServices

The services above are composed by using the parallel composition operator _ j _ that

allows the di¤erent components to be concurrently executed and to interact with each

other. The delimitation operator [_] _ is used here to declare that pcar is a (partner) name

known to all services of the in-vehicle platform (i.e., Orchestrator, LocalDiscovery, Rea-

soner, and SensorsMonitor), and only to them.

Orchestrator, the most important component of the in-vehicle platform, is

½x1; . . . ; xn� ( pcar � Oengfail?hx1; . . . ; xni:Sengfail þ pcar � Olowoil?hx1; . . . ; xni:Slowoil)

This term uses the choice operator _þ_ to pick one of those alternative ‘‘recovery’’ behav-

iors whose execution can start immediately. For simplicity, only ‘‘engine failure’’ and ‘‘low

oil’’ situations are taken into account.

The receive-guarded prefix operator pcar � oi?hx1; . . . ; xni._ expresses that each recovery

behavior starts with a receive activity of the form pcar � oi?hx1; . . . ; xni corresponding to

reception of a request emitted, when a failure arises, by SensorsMonitor (a term representing

the behavior of the ‘‘low level vehicle platform’’ of figure 7.3).Receives, together with invokes,

written as p � o!he1; . . . ; eni, are the basic communication activities provided by COWS.

Besides input parameters and sent values, they indicate an end point (i.e., a pair com-

posed of a partner name p and an operation name o, through which communication

should occur. p � o can be interpreted as a specific implementation of operation o provided

by the service identified by the logic name p. An interservice communication takes place

when the arguments of a receive and of a concurrent invoke along the same end point do

match, and causes replacement of the variables arguments of the receive with the corre-

sponding values arguments of the invoke (within the scope of variables declarations). For

example, variables x1; . . . ; xn, declared local to Orchestrator by means of the delimitation

operator, are initialized by the receive leading the recovery activity with data provided by

SensorsMonitor.

The recovery behavior Sengfail, executed when an engine failure occurs, is

[pe,oe,xloc,xlist] ((requestCardCharge j requestLocation.findServices)
j pe � oe?h i:pe � oe?h iselectServices.orderGarage. (orderTowTruck j orderRentalCar))

pe � oe is a scoped end point along which successful termination signals (i.e., communica-

tions that carry no data) are exchanged to orchestrate execution of the di¤erent compo-

nents. Variables xloc and xlist are used to store the value of the current car’s GSP position

and the list of closer on-road services discovered. To present the specification of Sengfail in

terms of the UML actions of figure 7.4, we have used an auxiliary ‘‘sequence’’ notation

(e.g., in requestLocation.findServices). This notation indicates that execution of request-

Location terminates before execution of findServices starts. Indeed, requestLocation

.findServices actually stands for the COWS term
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pcar � oreqLoc!h i j pcar � orespLoc?hxloci.
( pcar � ofindServ!hxloci
j pcar � ofound?hxlisti:pe � oe!h iþ pcar � onotFound?h iÞ

where requestLocation and findServices are

requestLocationx pcar � oreqLoc!h i j pcar � orespLoc?hxloci
findServicesx pcar � ofindServ!hxloci

j pcar � ofound?hxlisti:pe � oe!h iþ pcaronotFound?h i

Bank, the last service we show, can serve multiple requests simultaneously. This behav-

ior is modeled by exploiting the replication operator * _ to spawn in parallel as many

copies of its argument term as necessary. The definition of Bank is

* [xcust,xcc,xamount,OcheckOK,OcheckFail ]

pbank �Ocharge? hxcust, xcc, xamounti.
(hperform some checks and reply OnocheckOK or OcheckFaili
j pbank �OcheckOK?h i � xcust �OchargeOK !h i
þ pbank �OcheckFail? h i � xcust �OchargeFail !h i)

Once prompted by a request, in contrast to Orchestrator, Bank creates one specific in-

stance to serve that request and is immediately ready to concurrently serve other requests.

Notably, each instance exploits communication on ‘‘internal’’ operations OcheckOK and

OcheckFail to model a conditional choice.

7.6.2 Using Types for Verifying Service Properties

One advantage of using COWS as modeling language is that it already provides some tools

for analyzing the models and verifying the properties they enjoy. For example, the type

system introduced in Lapadula et al. (2007a) for checking data security properties on

COWS terms is a practical and scalable way to provide evidence that a large number of

applications enjoy some given properties: from the type soundness of the language as a

whole, it follows that all well-typed applications do comply with the properties stated by

their types. The types permit expression of policies constraining data exchanges in terms

of regions (i.e., sets of partner names attachable to each single datum). Service pro-

grammers can thus settle the partners usable to exchange any given datum (and then the

services that can share it), thus avoiding the datum’s being accessed (by unwanted services)

through unauthorized partners. The language operational semantics uses these annotations

to guarantee that computations proceeds according to them.

To provide a flavor of the properties that can be expressed and enforced by using the

type system, we illustrate some properties relevant for the scenario modeled above. First,

a driver in trouble must be assured that information about his credit card and GSP posi-

tion cannot become available to unauthorized users. To this aim, the credit card identifier

ccId, communicated by activity requestCardCharge to the service Bank, can be annotated
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with the policy {pbank}, which allows Bank to receive the datum but prevents it from trans-

mitting the datum to other services. Similarly, the car’s GSP position stored in xloc, used by

services orderGarage, orderTowTruck, and orderRentalCar, can be annotated with the

regions {xgarage}, {xtowTruck}, and {xrentalCar}, respectively, to specify di¤erent policies for

the same datum, according to the invoked services. Notably, these policies are not stati-

cally fixed, but depend on the partner variables xGarage, xtowTruck, and xrentalCar, and thus

will be determined by the values that these variables assume as computation proceeds. As

a final example property, we mention that by using only appropriate regions, including the

customer partner name, one can guarantee that critical data of on-road services, such as

cost and quality of the service supplied, are not disclosed to competitor services.

7.7 Quantitative Analysis of Service-Level Agreements

In the car repair scenario the quantitative issue of concern relates to how long it will take

from the point of engine failure until both a tow truck and a garage have been ordered,

and the tow truck is on its way to help the stranded driver. If the duration of each of the

service activities which need to take place along the way (requestLocation, findServices,

orderGarage, . . .) was known exactly, then this calculation would simply involve adding

up these times to give the total duration. However, as is usual in service-oriented systems,

none of these durations will be known exactly in this case, and the calculation needs to be

based on the expected average duration of each of the atomic service events. In this setting,

where only the average duration is known, and not the variance or higher moments, the

correct distribution to model with is the exponential distribution. Thus, this aspect of

the problem naturally lends itself to Markovian representation and analysis, and that is

the approach we will take here.

For the quantitative analysis of such systems we use Performance Evaluation Process

Algebra (PEPA) (Hillston 1996), which extends classical process algebras by associating a

duration with each activity. Thus, where classical process algebras such as CCS and CSP

deal with instantaneous actions which abstract away from time, PEPA has continuous-

time activities whose durations are quantified by exponentially distributed random vari-

ables. Thus PEPA is a stochastic process algebra which describes the evolution of a process

in continuous time. The operational semantics of the language gives rise to a continuous-

time, finite-state stochastic process called a continuous-time Markov chain (CTMC),

which can be used to find the steady-state probability distribution over a model. From

this it is straightforward to compute conventional performance measures such as utiliza-

tion or throughput. Here we are instead performing transient analysis of the CTMC,

where one considers the probability distribution at a chosen instant of time. It is possible

to use these results to perform more complex quantitative analysis, such as computing

response-time measures and first passage-time quantiles, as used in service-level agree-

ments. It is also possible to perform scalability analysis by using an altogether di¤erent
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representation based on ordinary di¤erential equations. For example, we have investigated

with PEPA how models of Web Service execution scale with increasing client population

sizes (see Wirsing et al. 2006).

The PEPA process algebra is a compact formal language with a small number of combi-

nators. Components perform activities. Activities have a type and rate specified using

prefix (.) so that (a, r) denotes performing activity a at rate r and (a, T) is a partner for

this where the other partner in the cooperation determines the rate. Alternative behaviors

can be composed in a choice (þ). Parallel composition of components uses CSP-style syn-

chronization over a set of activity types (./). Private behavior can be hidden (/).

To perform quantitative analysis, we assign exponentially distributed rates to the activ-

ities of our model. Table 7.1 explains the meaning of these. In our modeling we were un-

willing to assume that we even knew precisely the average duration of the atomic service

events, and required only that these values lie in a range between some minimum and some

maximum average value. The less certainty we have about the actual value of the rate, the

wider this range must be.

We analyzed the model first using the PEPA Workbench (Gilmore and Hillston 1994),

which confirmed that the model had no deadlocks and no transient states, and that all

local states of all components were reachable and that all activities were live. We used the

ipc/Hydra tool chain (Bradley and Knottenbelt 2004) to assess the service against the fol-

lowing compound service-level agreement (SLA-1) on the orchestration overall.

At least 30 percent of engine failures lead to the tow truck being ordered within 15

minutes and at least 60 percent of engine failures lead to the tow truck being ordered

within 30 minutes.

Table 7.1
Activities and minimum and maximum values of the rates from the model

Value

Activity Rate min max Meaning

EngineFailure r1 1.0 1.0 Arbitrary value—measurement only begins at the
end of this event

RequestLocation,
FindServices

r2 0.9 1.1 Location information can be transmitted in one
minute, with little variance, service discovery is
similar

CurrentLocation r3 0.25 1.25 The driver processes location information and
decides to act on this, with high variance

SelectServices r4 1.9 2.1 The reasoner takes around thirty seconds to make a
decision, with little variance

SelectServices r5 0.25 1.25 The on-road repair service takes slightly less than
one minute to process orders, with high variance

All times are expressed in minutes. Thus a rate of 1.0 means that something happens once a minute (on average).
A rate of 2.0 means that the associated activity happens twice a minute on average, or that its mean or expected
duration is thirty seconds, which is an equivalent statement.
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At first sight it might seem that SLA-1 is so generous with the time bounds and confi-

dence bounds that it will easily be satisfied, and that a more demanding SLA-2 could be

posed instead: ‘‘30 percent of failures dealt with in 10 minutes, 90 percent in 30.’’ How-

ever, there is a possibility that each atomic service event in the orchestration will take

longer than average and that each of these is operating at its minimum rate, leading to a

much longer overall time than might be expected.

We assess SLA-1 using the passage-time quantile computation capabilities provided

by ipc/Hydra. We vary rates r2 to r5 across five possible values, leading to

5� 5� 5� 5 ¼ 625 experiments to be performed. The graphs of computed probability

against experiment number for time bounds of 15 minutes and 30 minutes for all 625

experiments are shown in figure 7.7. Using both of these graphs, we determine that

SLA-1 is satisfied across the values of the rates of the model, but that the time bounds

and confidence bounds are tight, and the more demanding SLA-2 would not be satisfied

by some of the combinations of rate values used in the model.

7.8 Concluding Remarks

Service-oriented computing and service-oriented architecture are having a huge impact on

IT-based business organizations across the world. However, there are still many open

issues regarding the development, analysis, and deployment of such software, some of

which touch the very foundations of service-oriented computing.

As a remedy, the EU project Sensoria is developing a novel comprehensive approach to

the visual design, formal analysis, and automated deployment of service-oriented software

systems where foundational theories, techniques, and methods are fully integrated in a

pragmatic software engineering approach.

Compared to other research projects in the field of service-oriented computing, Sensoria

focuses heavily on scalable quantitative and qualitative analysis techniques based on for-

mal foundations which can be embedded into a practical software development process.

SODIUM,3 in contrast, focuses on service-modeling semantic support for service discov-

ery, but leaves aside dynamic reconfiguration, model transformation, service deployment,

service extraction, and analysis techniques. PLASTIC,4 on the other hand, is more focused

toward development, deployment, and management of service-oriented adaptive applica-

tions. Resource management is a major aspect in the PLASTIC approach. The SeCSE

project5 is geared toward development and runtime support for service-oriented comput-

ing, again considering formal analysis techniques of services as a secondary field of activ-

ity. Sensoria’s main research focus and asset in the service-oriented community is therefore

the combination of a pragmatic approach with formal theories for service-oriented com-

puting, supporting both development and analysis of service-oriented systems.

We have illustrated service modeling in high-level languages such as SRML or the Sen-

soria extension of UML, service selection with soft constraints, and analysis of qualitative
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Figure 7.7
Graph of probability of completing the passage from engine failure to completion of order of tow truck within
fifteen and thirty minutes plotted against experiment number over all 625 experiments
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and quantitative service properties with process calculi such as COWS and PEPA. Further

research of the Sensoria project addresses topics including resource consumption of ser-

vices, security, reconfiguration, deployment, and reengineering of legacy systems into

services. To facilitate practical application of these results, we are distributing the Sen-

soria development environment under an open-source license.

To learn more, please visit our website http://www.sensoria-ist.eu/.
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