Extending UML to Model Hypermedia and Distributed

Systems”
Luis Mandel Nora Koch, Christoph Maier
Forschungsinstitut fiir Angewandte Institut fiir Informatik?
Software Technologie (FAST e. V.T) Ludwig-Maximilians-Universitat Miinchen
Arabellastr. 17 Oettingenstr. 67
D-81925 Miinchen, Germany D-80538 Miinchen, Germany
Tel: +49 89 920047 39 Tel: +49 89 2178 2177
Fax: 449 89 920047 18 Fax: 449 89 2178 2152
mandel@fast.de {kochn,cmaier}@informatik.uni-muenchen.de

4th February 1999

Abstract

The present report presents conservative extensions to UML in order to model dis-
tributed aspects and hypermedia systems. Ideas and notation coming from the YAQON
project, the EPK-fix project, a methodology for the development of Electronic Prod-
uct Catalogs (EPCs), and 00HDM —short for “Object-Oriented Hypermedia Design
Method”— have been used. YAON is a notation designed to graphically document
the implementation decisions embodied in object-oriented programs running in dis-
tributed systems. OOHDM is a methodology for modeling hypermedia applications
suitable to model special aspects such as navigation and user interface. This exten-
sion provides the user with all the power of UML plus the capabilities of the YAON
with their locations for the physical encapsulation, the client/server relationship, and
some new class, modifiers as well as the navigation among these abstractions levels
modeled using the 00HDM/EPK-fix approach.

Keywords: Modeling Language, Object-oriented Design, Distributed Systems, Ob-
ject Notation, Multimedia, Hypermedia.

*This work was partially supported by the Bayerische Forschungsstiftung.

1 INTRODUCTION 2

1 Introduction

The explosion of Internet applications, specially WWW applications with all their multi-
media aspects such as the combination of text, hypertext, images, computer animations,
video, sound has raised the necessity of formal or semi-formal methodologies for develop-
ment such applications. Typically a Web application running on the Internet is based on
a client /server architecture and commonly has many distributed aspects. HTML pages as
well as applications (i.e. cgi scripts, java applets, etc.) can be distributed among different
servers.

In general notations like OMT [Rum95] or even the de facto standard UML [RAT97] do
not cover the requirements for the formalisation and graphic documentation of hypermedia
and distributed systems described above.

This paper aims at presenting an extension of UML to cover this gap. For the distributed
aspects different notations like MOSES [RHSL96a, RHSL96b], ION [A195], yaon [MM97],
etc. has been researched and mostly of the notation come from the YAON mainly because it
was easier to adapt to the UML notation. YAON, short for Yet Another Object Notation,
is a practical notation designed to graphically document the implementation decisions
embodied in object-oriented programs running in distributed systems and open networks
using different communication protocols derived from the Intermediate Object Notation
(ION) (see [AI95]) developed at the NASA by Colin Atkinson and Michel Izygon. New
concepts have been added in order to specify how systems running in a physical location
communicate with other entities physically located in other places. In addition, there are
defined some new concepts such as synchronized and active classes not present in UML.

For modeling hypermedia systems ideas, notation, and concepts coming 00HDM (see [Sch97])
and EPK-fix (see [KKW*97]) have been taken on.

00HDM (Object-Oriented Hypermedia Design Method) uses abstraction and composition
mechanisms in an object-oriented framework to allow, on one hand, a concise description of
complex information systems, and on the other hand, to permit the specification of complex
navigation patterns and interface transformations. In 00HDM, a hypermedia application is
built in a four-step process supporting an incremental and prototyping process model. Each
step focuses on a particular design concern and builds an object-oriented model. These
steps are the Conceptual Design, Navigational Design, Abstract Interface Design and the
Implementation.

In EPK-fix, a catalogue (viewed as a hypermedia application) comprise four interacting
components called structure, layout, direction and services. An extra interactive component
is an existing product database. With structure is meant the skeleton of the hypermedia
application, layout is the component which comprises the static aspects, i.e. frames, win-
dows, etc. of the application whereas direction is the component where the navigational
aspects are described. It is divided into macro and micro navigation. The first one is the
navigation through the catalogue while the second one is the navigation inside a frame or
a window. Services add some comfort to the application, such as help methods, search

2 THE UNIFIED MODELING LANGUAGE UML 3

methods, and bindings to scripts.

The resulting notation has been made in an orthogonal way. The amalgamation of the
extensions for modeling distributed systems and the ideas and notation coming from the
00HDM/EPK-fix approach for multimedia and hypermedia modeling, brings the user a nat-
ural way to describe a system both in its structure and its user interface showing which
information is going to be shown and how these information is going to be navigated.

QOutline:

This document is structured as follows. In Section 2, the origin and the intention of UML
is explained, where in sect. 3 the UML extensions for distributed systems are given. These
extensions are going to be used in the sect. 4 where the proposed extension for hypermedia
is done. Finally, some conclusions and future research lines are given.

2 The Unified Modeling Language UML

The Unified Modeling Language (UML) is the synthesis of many notations developed for
software engineering and object-oriented analysis and design methods appeared in the last
twenty years. It has been developed by Booch, Rumbaugh and Jacobson, unifying concepts
and ideas coming from OMT [Rum95], the use cases from Jacobson [BC89], the CRC
(Class-Responsibility-Collaboration) cards from the smalltalk community [WBWW90], the
statecharts from Harel [Har87], and many other were introduced to UML and now this
unified notation is a de facto industrial standard which has been also aproved by the
standarisation comitte of the OMG (Object Management Group).

The result is a modeling language (and not a methodology) for specifying, visualizing,
constructing and documenting the artifacts of a system intensive process. Most methods
consists of both a modeling language and a process. The modeling language is the (mainly
graphical) notation that methods use to express design where the process is their advice
on what steps are to be taken in doing a design.

3 Adding Extensions for Distributed Systems

In this section, the extensions to UML for distributed systems are presented. These ex-
tensions are based on the YAON notation. The goal of YAON is to document graphically
implementation decisions of distributed systems with a strong bias to the Java language.
Therefore some Java-like class, method and attribute modifiers have been added to the no-
tation. Nodes representing classes are extended to specify active and synchronized classes.
Basically a new relationship between classes is added: the client/server relationship. The
nodes and arcs are described in the following Section.

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 4

3.1 Classes

Two new types of classes are supported using the UL stereotypes. They are the < active>>
and <synchronized>> classes. The class system is restricted to be flat, i.e. there is no
way to declare local classes inside a class nor anonymous classes. The basic class icon is
presented in Fig. 1:

standard_class
Attribute_1
Attribute2

Method_1()
Method 2()

Figure 1: Standard Class

The class name, as always, is written on the top part of the rectangle as indicated. The
attributes of the class are described in the middle section of the icon, and the methods
of the class in the lower section. This general arrangement of information is retained
wherever properties of classes or methods are defined. The ellipses (...) appearing after
the attributes and methods are significant, and are used to indicate that an annotation
only contains partial information. For example, if a class has exactly two methods, this is
indicated by the list method_1(), method_2(). If the class has more methods beside these
two, this is indicated by method_1(), method_2(), Thus it is possible to derive from
the diagram whether all the information has been included or whether some is missing. As
a shortcut, the attributes and methods may be omitted.

The following visibility modifiers can be specified: public, private, protected and default.
These modifiers are those used in the Java programming language and will be specified as
a tagged value (i.e. as a metamodel attribute) between braces under the class name and
as a prefix of the method or attribute name where their corresponding symbols are shown
in Fig. 2: If no modifier is used, the default visibility is assumed.

‘ Modifier ‘ Class ‘ Method ‘ Attribute ‘
* * *
‘ Modifier ‘ Symbol ‘ ﬁna‘l
NF < native *
ublic -
Pt synchronized * *
private - - "
transient
protected # - =
Jofault volatile
efau
abstract * *
static * * *

Figure 2: Visibility and Special Modifiers

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 5

Also special modifiers applicable to classes, methods and attributes are available. These
special modifiers have no representation in UML and therefore they will be used as property
strings of attributes and methods with the standard representation of UML, i.e. between
braces, as the tagged values of classes. Fig. 2 gives an overview. The modifiers can be
combined as for example:

+ main (String [] args)

This specifies the public static method main of a given class. An example, which shows
the use of modifiers, is depicted in Fig. 3.

Default values as well as type (or class) of attributes can be specified. The = notation will
be used for that purpose. For example, if an attribute called “counter” should be an inte-
ger whose initial value is 1 this will be specified as “counter: Integer=1". If the attribute
“counter”’” can have only values 1, ... ,1, then those values will be specified using an ex-
tensive comma list containing all the possible values, i.e. as “counter: Integer=[iy,... ,1,]”.

An active class is one whose instances have an independent thread of control. Thus, they
have the ability to run methods “spontaneously”. In contrast, an instance of a passive
class executes a method only when it is called by another object. After completing the
method it is passive again. To depict an active class, the basic class icon is extended with
the stereotype as shown in Fig. 3.

K actives> -
‘ < synchronized>>
standard_class active_class (¥ .
‘ ; synchronized_class €
+ Attribute_1{final} {public} + Attribute_l
- Attribute 2 + Attribute_l # Attribute_j
... - Attribute2
+ Method_1(){synchronized} " Me‘th‘od 1()
Method_2() + Method_1 - Method_Q()
- Method_2 i

Figure 3: Standard, Active and Synchronized Classes Using Modifiers

Synchronized classes are those whose methods are protected from concurrent invocation
of their methods. A circle with two crossed lines inside has be chosen to annotate the
stereotype for synchronized classes (Fig. 3). Some “synchronisation protocol” exists in
order to protect them. The synchronization of the methods is also described in the class
box. Icons for the most common synchronization protocols, such as mutual exclusion,
readers/writers, guarded are provided. Actually, the protocol icon must be interpreted as
a shorthand of another diagram where the synchronization protocol is specified. These
protocols can be specified using Petri nets, state-charts, etc. If the user would like to have
a new protocol, he has to chose a new icon and must give the protocol specification using

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS

one of the formalisms mentioned above. FExamples of synchronized classes are given in

[MM97].

3.2 Clientship Relation

A clientship relation exists between a class called client and a class called server. This
relation is unidirectional and there exists an arrow from the client_class to the server_class if
the client uses a method from the server. This is a static relation denoted by the stereotype

K client/server>>, and then it can be detected at compilation time (see Fig. 4).

client_class

&< client/server>>

server_class

Figure 4: Client Server Relationship

In the following different stereotypes for the Client/Server relationships are presented.

Permanent versus Transient Relationships

If the client has the data in its main structure, the relation is said to be permanent.
Otherwise, if the client objects have visibility only during the method call, the relation is
said to be transient. A permanent relation is denoted with a circle inside the class symbol
and by the stereotype < perm>>; a transient relation with a circle outside the class symbol
and the stereotype <trans>> (see Fig. 5). Using these relationships, one can specify the

interval of time a relation exists.

perm_client

<perm>>

server_class

O

Figure 5: Permanent versus Transient Relationships

Ltrans>>

trans_client

~
N

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 7

Attached versus Detached Relationships

It can also be distinguished whether the client holds a reference to the server or if it holds
the actual state of the server (a value). In the first case the relationship is said to be
detached, whereas in the second case, it is said to be attached. A detached relationship
is useful in the following situation: A client requests information from the server. This
information is stored as an object inside the server. If the server passes a reference to this
object, the client can use this reference to change the object inside the server directly. To
avoid this, the server must send the value of the object to protect it from unproper use

(see [Atk91]).

Det_client server_class Att_client
< detached>> < attached>

O

Figure 6: Attached versus Detached Clientship Relation

Every clientship arrow has a small circle at the client’s end (i.e. the tail). If the circle is
transparent the clientship is detached whereas if the circle is a black bullet the clientship
is attached. The server is in a sense a part-of, or stored within it. Also the stereotypes
Lattached> and <detached> will be added to the respective arcs.

There are in YAON more stereotypes for clientship annotations which are optional, such
as the stereotype for procurement annotation, stereotype for call annotations, stereotype
for asynchronously executed methods, stereotype for reference annotations, stereotype for
multiple clientship relation. For more information about these steretypes see [MM97].

3.3 Virtual Nodes

The concept of virtual node is introduced to YAON as Atkinson did in [Atk91]. This concept
is missing in UML and it is indispensable in order to specify “real” distributed systems.
Virtual nodes are clusters of classes (or packages) represented bas bevel-edges.These clus-
ters are the set of nodes/classes which will potentially be distributed to physical locations.
In this way remote client/server relationships can be specified. An example of this nota-
tion is given in Fig. 7. It includes three virtual nodes: node_1, node_2 and node_3. node_1
only contains the Class_B, node_2 contains the Class_Y and Class_Z and node_3 contains a
package Pack_A which contains the Class_X. The Class_B from node_l is in a client/server
relationship with the Class_Y from node_2 and it is also in a client /server relationship with
the Class_Z from the same node. The Class_X from package_A from node_3 is also in a

4 ADDING EXTENSIONS FOR HYPERMEDIA 8

v node_1 v node_2
| Class_B ‘ Class_Y
K client/server
Lclient/server>
Y
Y
Class_7
. mode method_Z7
I Pack_A
Class X v '

K client/server>

Figure 7: Virtual Nodes

client/server relationship with the Class_7Z of node_2. The communication between vir-
tual nodes can be done by normal method invocation as described in 3.2 or, if the virtual
nodes are to be distributed, remote communication mechanisms can be used as described

in [MM97].

Note that using the client/server relationship and the virtual nodes one can specify dis-
tributed multimedia applications with client and server-side applications such as dynamic
generated pages via CGl-applications, links to CGl-scripts or servlets running on remote
servers, embedded applets. Also synchronization between multimedia objects can be spec-
ified, like the specification of a video which should begin when a link is activated.

4 Adding Extensions for Hypermedia

In this section the extensions to UML for multimedia and hypermedia design are pre-
sented. These extensions are based on the EPK-fix and 00HDM methodologies as described
in [KKW*97] and [Sch97] respectively. Basically UML will be extended with navigational
modeling features i.e. a graphic notation will be added to UML in order to describe which
objects and how are going to be visited and in which contexts. Also a notation for the
Layout or Abstract User Interface will be given.

For the Conceptual Design the extensions already presented in Section 3 will be used.

4 ADDING EXTENSIONS FOR HYPERMEDIA 9

These extensions are powerful enough for the specification of object-oriented systems and
distributed systems such as web applications.

banPack
Banner Product Supplier Person
address: Hyperlink name: String 1 N name: String name: String
logoProd: Image che: Integer company: String address: String
timeout: Intger price: Float suppliedBy } address: String phone: String
description: String code: Integer
v
isAuthorOf
BookServer
Software Hardware OnlineService Book
Prina- ditorial: Stri
platform: String illustration: Image basicPrice: Float editorial: String

title: String
ISBN: String

hourPrice: Float

Figure 8: An EPC of a Software-House

Following the approaches presented above we assume that a Conceptual Design made of
classes and relationships between classes already exists. The presentation of the extensions
will be made by using an example of a simplified EP C of a Software House. The conceptual
design of such catalogue is depicted in Fig. 8. The class diagram shows the class Product
that has four subclasses, namely Software, Hardware, OnlineService and Book. For each
product there are many suppliers represented by the Supplier class. Fach product has a
name, a code, a price and a description. Software products have an attribute platform which
is a string representing the platform where the product runs. For Hardware products there
is an image of the product, OnlineService have a basic price and an hour price and Book
have attributes representing the author, the title and the editorial. Book are encapsulated
in a package called BookServer located in a remote server.

The class Banner is a subsystem having an aggregation relationship with the Products
class. This banner is actually an application which during an amount of time shows
some advertisement in the following way: An image of a given product (of the same
category) is displayed and the whole image is a button which when clicked will activate
the corresponding hyperlink to that product. After the timeout limit is reached a new

4 ADDING EXTENSIONS FOR HYPERMEDIA 10

hyperlink and a new timeout is set and a new image corresponding to another product (of
the same category) will be visible. This is done in a cyclical way, that is, when the last
product is reached the banner application will begin with the first product again.

We begin the description of the extensions with the Direction or Navigational Design,
which is followed by Abstract Interface Design or Layout.

4.1 Notation for the Navigation

Navigation is constructed as a view (in the database way) over the conceptual model or
structure. The navigational model is obtained from the conceptual model through elimi-
nation or addition of classes as well as the definition of new attributes and relationships.

In OOHDM, navigational design is expressed in two schemas: The navigational class schema
and the navigational context schema. Navigable objects of an application are defined by
classes in a navigational class schema, whose classes reflect the chosen view over the appli-
cation domain. In OOHDM there is a set of predefined types of navigational classes: nodes,
links, contexts and access structures. The semantic of nodes and links is the natural one
in hypermedia applications whereas access structures, such as indexes represent possible
ways of accessing nodes.

A navigational object, also called navigational node or simply node is an instance of a class
in the navigational class schema.

Three new attributes have been added here to the navigational objects. They are the
refresh of type link and the timeout of type integer. They work together and the intended
semantics is that the current navigational object will load the link specified by the attribute
refresh after the time specified by the timeout attribute is reached. If no timeout is specified
an infinite amount of time will be assumed. The link refresh can have a special value
which is self. In this case the same navigational object will be reloaded after the timeout is
reached. This is special useful for navigational objects which have information dynamically
generated, like scoreboards.

Yet another new attribute has been included and it is the expiration one, which is of type
date. The intended semantics is that the information contained by that navigational object
will expire after the date specified by this attribute. Specific browser can use this attribute
in order to display with special layout (or not display at all) the expired information.
User specific attributes can also be added, like name of the navigational object, language,
author, keywords, etc.

In an analogous way, links reflect relationships, as already said, intended to be explored
by the final user and are also defined as views on relationships in the conceptual schema.

The general syntax for defining the attributes of navigational objects is shown in Fig. 9,
where:

o nodeName is the name of the class of nodes we are creating.

4 ADDING EXTENSIONS FOR HYPERMEDIA 11

NODE nodeName [FROM className:varName] [INHERITS FROM nodeClass]
attribute;:type; = [SELECT name;]

[FROM classy:varNamey, ... classj:varName;

[WHERE logical-expression]
attributey:type; = [SELECT names] ...

attribute,:type, = [idem]
refresh: Link

timeout: Integer

expires: Date

END

Figure 9: Node Definition

e className is the name of a conceptual class (from which the node is being mapped);
o nodeClass is the name of the super-class;
o attribute; are the names of attributes for that class, type; the attribute’s types;

e name; are the subjects for the query expression and varName; are existentially quan-
tified variables used to express logical conditions;

o [ogical-expression allows defining classes whose instances are a combination of objects
defined in the conceptual schema when certain conditions on their attributes and/or
relationships hold;

e timeout is an integer specifying the amount of time to be waited in order to load the
node specified by the attribute refresh;

o refresh is a link to a node. A special value self is allowed which is equivalent to a
link to itself;

o cxpires is a date specifying the expiration of the information contained by the current
node.

As an example, consider the EPC of Fig. 8. In addition the navigational class schema will

be designed (see Fig. 10).

Note that in this “view” Person has been eliminated as a class and that information about
persons will be added to the class Book via an sql-like query. The right-hand-side of the
query (author) is a new attribute of the Book class whereas the left-hand-side is a set whose
cardinality is given by the cardinality of the relation in the conceptual design. The WHERE
clause of the query uses the name of the relationship isAuthorOf for determining which are
the authors of the given book. Similarly for the Supplier class.

4 ADDING EXTENSIONS FOR HYPERMEDIA 12

banPack
Product
name: String
Banner code: Integer
price: Float
address: Hyperlink description: String
logoProd: Image sup: String =
timeout: Integer SELECT supName
FROM Supplier:Sp
WHERE
self suppliedBy Sp

i

Software Hardware OnlineService Book

: Stri i ion: icPrice: thor: String =
platform: String illustration: Image basicPrice: Float au
hourPrice: Float SELECT name

FROM Person:Pr

WHERE
Pr isAuthorOf self

editorial: String
title: String
ISBN: String

Figure 10: Navigational Class Schema of an EPC of a Software-House

On the other hand the class Banner still appears in the navigational class schema having
an aggregation relationship to Product. This class is treated as a subsystem and therefore
its navigation will be defined in its own navigational class schema.

Up to now the navigation was possible only between single objects but navigation within
set of navigational objects and between sets of navigational objects is needed. To address
this problem the “navigational contexts” have been defined. Normally such information
are back-links, class hierarchies, menues, etc. In 00HDM, the main structuring primitive of
the navigational space is the notion of navigational context . A navigational context is
a set of navigational objects and other (nested) navigational contexts. It may be defined
intensionally or extensionally, by either defining a property that all nodes and links in the
context possess, or by enumerating its members. The definition of a context also includes
a traversal order of its elements, and the existence or not of associated access structures.
In this way a new kind of diagram is introduced: The “navigational context schema”.
Whereas the “navigational class schema” of above shows which information is going to
be visited the “navigational context schema” shows how this information is going to be
accessed.

Queries come in two flavours. Normally a query takes a user input and either generates

4 ADDING EXTENSIONS FOR HYPERMEDIA 13

an index with the result or directly goes to the first result node which has a link to the
following and so on. Icons for such queries are shown in Fig. 11.

Query /
& Index /

Figure 11: Query and Index Query

Presentation [Software
OnlmeserV,CeS »3 Index — By Name —l

|~ Name Lo ! A

S ndex |

MAIN
—— s Hardware
,,,,,, = Index —= ByName =
// P L ____ ! B
VQuery e I roducts i ‘By Code
,,,,,, / 'By Name = o T
SRR By Supplier ' Index |
By Keyword = R
By Supplier =
e - Books
ByCode — = Index —~ByName =
777777 ByISBN

By Publisher

Figure 12: Navigational Context Schema of an EPC of a Software-House

Navigational contexts organize the navigational space into consistent sets that can be
traversed following a pre-established order. Fig. 12 shows the navigational context schema
of the EPC whose conceptual design has been presented in Fig. 8 and whose navigational
class schema has been depicted in Fig. 10. In this schema, it can be observed that there
is a Presentation that will be shown only once. No back-navigation is possible to the
presentation. A Query possibility is presented and a link to OnlineServices is displayed.
The query directly interacts with the navigational node Products, i.e. input queries made
by the user will generate a mixed index of products with the matching results. Navigation
inside Products can be done from the context Code to any other context but not vice
versa. From the MAIN node one can directly reach the OnlineServices node. It is thought
that OnlineServices has only a context where the user can access to online services, like
encyclopedias, dictionaries. The MAIN node has links to three indexes (Software, Hardware
and Book). Using those indexes the user can access the respective products “inside” the
Name context. Navigation among contexts defined for the same class is permitted as well as

4 ADDING EXTENSIONS FOR HYPERMEDIA 14

navigation from Software-Products to Hardware-Products and navigation from Software-
Products to Book-Products. That is, given a Software-Products the user can access to
related Hardware-Products and to related Book-Products. Navigation from Hardware-
Products to related Book-Products is also possible but neither navigation from Book-
Products to Hardware-Products nor navigation from Book-Products to Software-Products
is allowed in this model.

4.2 Notation for the Layout

The Abstract Data Views (ADV) design model was originally created to specify the sepa-
ration of the user interface from the application components of a software system [CCL93].
This interface can be exercised through messages (in particular external events generated
by the user).

ADVs have been conceived to represent interfaces between different media such as networks,
users, or as interface among Abstract Data Objects (ADOs). Both have a state given by
their attributes and methods or actions which can change or query the state. ADVs have
additionally an interface and they are an abstract representation of the behaviour, not the
implementation.

Typically for one Abstract Data Object there are defined one or more Abstract Data Views
which describe how some aspects of its state is presented to the external world.

ADV OnlineService

ADV ImageField

ADV TextField

g ADV-Application J

ADV Navigation Buttons

Previous Next Back

Figure 13: Composition of ADVs

User interfaces can be viewed as a composition of behaviour and structure of simple visual

4 ADDING EXTENSIONS FOR HYPERMEDIA 15

objects. A window, for example, is a composition of menus, dialogue boxes, text fields,
images, and applications. Aggregation and inheritance mechanisms are used to define in-
terface perceivable objects as composition of lower-level ADVs and to provide a framework
for defining hierarchies of interface objects, respectively. Fig. 13 is an example of struc-
tural and behavioural nesting. Static and dynamic aspects of the abstract interfaces are
presented graphically in configuration diagrams and ADV Charts respectively.

4.2.1 Configuration Diagrams

Coleman [CHB92] defines configuration diagrams in the context of Objectcharts. They are
introduced in the ADV model to specify communication between the data views and the
data objects, thus ADVs provide services to the user and require services from the ADO.
If the Data View is an interface to the user, it also will receive stimuli from the user in
form of mouse click, mouse focus or keyboard input (Fig. 14).

Display get

Keyboard ADV ADO

Figure 14: General Configuration Diagram of an ADV

The configuration diagram shows also the composite structure and composite behaviour of
the user interface. OOHDM uses the ADV approach and has improved the original notation
[CHB92] as follows:

o A dashed line is used to permit representation of relationship between enclosed ADVs,
e.g. user mouse click on Show related Books will display the ADV ADVBook associated
with the corresponding navigational context (see Fig. 15). As result of this invocation
a list of bools is displayed. Optional elements are indicated with an o in the right
corner.

o Objects that are not reactive to user’s activities are defined as ADV’s attributes.

e Composition of type AND and XOR are represented by placing objects side by side
and lightly superposed respectively.

OOHDM proposes to use the size of the included ADVs to indicate relative importance and
use this in the implementation phase. We think that such decisions are to be taken in the
implementation as they may be dependent of the chosen medium, e.g. images or videos
are central point of attention in a hypermedia application on CD-ROM while in the same
application implemented for the Web performance aspects have to be considered.

4 ADDING EXTENSIONS FOR HYPERMEDIA 16

ADV Hardware get text Navigation

String: name Object
Integer: code Hardware

String: description getimage
display Float: price

mouse clicked

Image

Show ADV Software o

related Software |] is an anchored list

Show | | (@)
related Books ADVBook
B
[anner] Context
Software
Anchor Selected by name
Navigation Buttons [7~
Previous Next Back Index of
Anchor Selected Software

Figure 15: Configuration Diagram for ADV Project

Neither size, position nor other layout characteristics are specified in the ADV approach
design. Therefore, ADV objects that are placed side by side in the configuration diagram
may be placed in the same place in implementation, i.e. an anchor hidden by a video and
with the reaction capability to start the video on mouse click.

A configuration diagram for the ADV Hardware of the Software-House example using
the OOHDM notation is presented in Fig. 15. Two kinds of reaction to user’s actions can
be observed. The first type only produces changes in the content and layout of the same
composite ADV. The second one is of type navigation, in which case a hyperlink is followed
reaching other nodes of the hyperspace. In the EPK-fix methodology [KS97] these two
types of reaction are described as micro-direction and macro-direction.

4.2.2 ADVcharts

ADVcharts provide a visual schema for the specification of the dynamic aspects of the user
interface. They contain one or more states and transitions as well as may contain attributes

4 ADDING EXTENSIONS FOR HYPERMEDIA 17

and other ADVs to describe their behaviour. They are an extension of Statecharts [Har87]
and Objectcharts [CHB92] supporting nesting of states and ADVs. Nesting of states ex-

presses behavioural nesting while nesting of ADVs is the expression of structural nesting.
ADVcharts also use notation from VDM and Petri-nets.

As in Statecharts the different states are represented with boxes with rounded corners and
the transitions between states with arrows from one state to another. The transition is
specified by four fields: transition’s name, pre-condition, event and post-condition. The
conditions that must be satisfied to fire the transition are given in the pre-condition. The
event-field specifies the event that will fire the transition (e.g. mouse click). The post-
condition gives the conditions that hold once the transition is fired (Fig. 16).

Transitions:

1: Precondition:

1 2 Event: display
Postcondition: self.show

3 2: Precondition: Focus
Event: Mouseclick
Image Postcondition: PerceptionContext=
PerceptionContext-Hardware

Active

4 Software

3: Precondition: Focus
Event: Mouseclick
Postcondition: PerceptionContext =
PerceptionContext + zoomed(Image)

Software

5
Book Book

[Banner

i 5: Precondition: Focus
‘ T T Event: Mouseclick
Postcondition: PerceptionContext=
PerceptionContext + Book-Software

4: Precondition: Focus
Event: Mouseclick
} Postcondition: PerceptionContext=

PerceptionContext + Software-Book

Previous Next Back

Figure 16: ADV Chart for Project

ADVs allow the representation of synchronisation among different objects using the symbol
for synchronisation of Petri-nets (D) to join those transitions that must be synchronised.

4.2.3 Improvements to the ADV Notation

Although the ADV configuration diagrams of 00HDM are more intuitive than the original
ones, we consider that additional improvements are required. For certain frequently used
user interface objects, such as anchors or input fields as well as for lists of objects a special
notation is helpful, even in complex configuration diagrams needed.

4 ADDING EXTENSIONS FOR HYPERMEDIA 18

Not only users may generate events but also the system. For example timeout events, like
the scoreboard of a live match or the rate of the stock market.

In the following a specific notation for User Input, Collections, Anchors, Applications,
Sound and System Events are presented.

User Input

Hypermedia applications are changing from being totally passive applications, which offer
to the user only the possibilities to read, contemplate and take decisions about which link
to follow next, to more active ones. Interactive applications additionally give the users the
possibility to query databases, to select and to store data.

We define a notation for ADV input, specifying which information the users are requested
to supply. Notice that there is no indication made, if the users are using the keyboard to
entry the data or selecting options from a browser or a checkbox. These are implementa-
tion aspects to be decided in the corresponding implementation phase. The semantics of
this ADV includes the display of the ADV content, the waiting for the user activity, the
evaluation of the input and the trigger of the defined event. The graphical notation for
the ADV input is a dotted lined box as shown in Fig. 17.

ADV Input Collection of Objects
Field1 o
Field2 : L
Field3 :)

Figure 17: ADV for User Input and Collection of Objects

Collections

A composite ADV contains a list of anchors, a set of options or a list of other interactive
ADVs. To avoid the textual description by comprehension or by extension of this kind of
composite we introduce a box with a special notation for collections (shown in Fig. 17). If
the list is of inputs, the box will be dotted. It is not specified if the list will be horizontal
or vertical, objects may even be arranged as a table. In case of a collection of anchors, a
navigation path for each object has to be defined.

Anchors

Anchors are the start points of the navigation. There are seldom presented in the literature
as independent objects [CB97, HS94] mostly as part of hyperlinks. They comprise at least

4 ADDING EXTENSIONS FOR HYPERMEDIA 19

a presentation and an associated hyperlink. The presentation may be either a text (even
single character), an image, a video, a group of mixed media, a special interactive object
like a button, or a whole document. In 00HDM they are specified as classes that inherit from
class text, image, video, etc. and referenced by anchored text, anchored image, anchored
video. Our purpose was to find an intuitive notation for anchors since they are one of
the most frequently used objects in the hyperspace model, thus we use an underlined
description in analogy to the usually notation used by browsers (see Fig. 18).

_Image Application

Figure 18: An anchor and an Application Ballot

Applications

Applications are incorporated to hypermedia nodes with increasing frequency. This is the
case of applets or embeded objects in WWW. It makes sense to distinguish them with a
special notation. We choose a balloon as shown in Fig. 18. Applications can also have
navigation, e.g. an application could display a hyperlink. Applications are modeled as
subsystems in the conceptual design and in case that an application has a navigational
object then it will appear also in the navigational design.

Sound

A special notation for embeded sound has been added to the proposed extension. We
choose a speaker to represent that an user interface object has associated a sound file (Fig.
19). This sound file will be loaded by a sound player running in background. Additional
information can be specified with notation, i.e. to indicate autostart by node loading a
black triangle is used and cyclical play with a loop.

System Events

Changes between states can be the result of internal or external events. Internal events
are generated by the transitions. We consider that external events may be caused by
the system as well by the user. External events generated by the user are mouse over,
mouse click or double click, before, during and after click. External events generated by

4 ADDING EXTENSIONS FOR HYPERMEDIA 20

Figure 19: Sound Icons

the system are timeout or refresh for example. They are represented in same way as user
events.

ADV Hardware Navigation

mouse clicked String: name Object
Integer: code Hardware
String: description getimage
display Float: price

Image

ADV Software ©

Show
related Software

Show | | O
related Books ADVBook
timeout [Banner J Context
] Software
Anchor Selected by name
Navigation Buttons ‘ 777777
‘ Index of
Previous Next Back Anchor Selected Software

Figure 20: Improved Configuration Diagram

Fig. 20 shows the ADV for the Hardware class of the example of the EPC Software-House
using the improved notation.

5 CONCLUSIONS AND ONGOING WORK 21

5 Conclusions and Ongoing Work

An extension to the UML notation, useful for modeling multimedia and distributed aspects
of computation has been presented. The notation includes primitives for static definitions
of classes, packages and virtual nodes. Classes can have different flavors. They can be
declared as standard, active, final, abstract and synchronized. Also visibility class modifiers
such as public, private and protected can be used in order to declare a class. Methods and
attributes can be declared with the same semantics as in Java. That is, it is supported
the same visibility and special modifiers for classes, methods and instance variables as the
Java programming language does.

The client/server relationship has been defined and different variants of this relationship
are supported. A variant of this relationship can be further detailed with annotations. For
example, for a remote client/server relationship it can be specified if the communication
will be done using sockets or if it is intended to be done using Remote Method Invocation.

Multimedia aspects have been added to UML in these extensions by using ideas and nota-
tion coming from 00HDM and EPK-fix. Given a conceptual design of a system a navigational
design is generated by adding some sql-like queries in order to generate the nodes to be
navigated. The Navigational Class Schema shows which information is going to be visited
whereass the Navigational Context Schema how those nodes are going to be navigated.

Finally, using Abstract Data Views, it is shown how the abstract user interface is composed.
In this way a web site can be modelled describing the layout of the html pages. This pages
may contain applications, like applets in WWW. which will be modeled as subsystems in
their conceptual design.

This is a first approach of modelling multimedia systems with UML notation. In a future
work it will be ported the whole notation and diagrams to UML in order to have a 100%
UML complaint.

Acknowledgements: We thanks Hubert Baumeister and Maria Victoria Cengarle for the
fruitful discussions and useful comments about the subject.

REFERENCES 22

References

[A195]

[Atko1]

[BCSY]

[CBY7]

[CCLY3]

[(CHB92]

[Har87]

[H594]

[KKW+97]

[KS97]

[MMO7]

Colin Atkinson and Michel Izygon. ION A Notation for the Graphical Depic-
tion of Object Oriented Programs. Cooperative agreement ncc 9-30, NASA,
July 1995. Available at http://ricis.cl.uh.edu/atkinson/ion/.

Colin Atkinson. Object—Oriented Reuse, Concurrency and Distribution — An
Ada—Based Approach. Addison—Wesley Publishing Company, 1991.

Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented
thinking. In Proceedings of OOPSLA’89, volume 24, 1989.

Licia Calvi and Paul De Bra. Improving the Usability of Hypertext Course-
ware Through Adaptive Linking. In Proceedings of The Flexible Hypertext
Workshop, 1997.

L. M. F. Carneiro, D. D. Cowan, and C. J. P. Lucena. Introducing ADV charts:
A Visual Formalism for Describing Abstract Data Views. Technical report,
PUC-Rio, July 1993.

D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How to
Use Statecharts in Object-Oriented Design. IEFEE Transactions on Software
Engineering, 18(1), 1992.

D. Harel. Statecharts: a Visual Formalism for Complex Sytems. Science of
Computer Programming, 8(3), 1987.

F. Halasz and M. Schwarz. The Dexter Hypertext Reference Model. Com-
munications of the ACM, 37(2), 1994.

Alexander Knapp, Nora Koch, Martin Wirsing, Jochen Duckeck, Rainer
Lutze, Hartmut Fritzsche, Dietrich Timm, Patrick Closhen, Martin Frisch,
Hans-Jurgen Hoffmann, Bernd Gaede, Josef Schneeberger, Herbert Stoyan,
and Aandreas Turk. EPK-fix: Methods and Tools for Engineering Electronic
Product Catalogues. In R. Steinmetz and L.C. Wolf, editors, Interactive Dis-
tributed Multimedia Systems and Telecommunication Services, Lecture Notes
in Computer Science 1309, pages 199-209. Springer-Verlag Berlin-Heidelberg,
September 1997.

Nora Koch and Joseph Schneeberger. Integrated Assistance for the Develop-
ment of Electronic Product Catalogues. In Proceedings of the Symposium on

Software Technology, SADIO, August 1997.

Christoph Maier and Luis Mandel. YAON — a Static Diagram Technique for
Object Oriented Distributed Systems. Technical Report 9709, Institut fur
Informatik der Ludwig-Maximilians-Universitat Munchen, 1997.

REFERENCES 23

[Oes97]

[RAT97]

[RHSL96a]

[RHSL96b]

[Rum95]

[Sch97]

[WBWW90]

Bernd Oestereich. Objektorientierte Softwareentwicklung mit der Unified
Modeling Language. Oldenbourg, 1997.

RATIONAL Software Corporation. UML Notation Guide, September 1997.
Version 1.1. Available at http://www.rational.com/.

GG. Rasmussen, B. Henderson-Sellers, and G.C. Low. Extending the MOSES
methodology to distributed systems. Journal of Object Oriented Program-
ming, pages 39-46, July—August 1996.

. Rasmussen, B. Henderson-Sellers, and G.C. Low. An object—oriented anal-
ysis and design notation for distributed systems. Journal of Object Oriented
Programming, pages 14-27, October 1996.

J. Rumbaugh. Modeling and design — omt: The functional model. Journal
of Object Oriented Programming, 8(1):10-14, 1995.

Schwabe, Daniel and Rossi, Gustavo. An Object Oriented Approach to Web-
Based Application Design. Technical report, Departamento de Informatica,

PUC-RIO, Brazil, 1997.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall, 1990.

